4 research outputs found

    General general game AI

    Get PDF
    Arguably the grand goal of artificial intelligence research is to produce machines with general intelligence: the capacity to solve multiple problems, not just one. Artificial intelligence (AI) has investigated the general intelligence capacity of machines within the domain of games more than any other domain given the ideal properties of games for that purpose: controlled yet interesting and computationally hard problems. This line of research, however, has so far focused solely on one specific way of which intelligence can be applied to games: playing them. In this paper, we build on the general game-playing paradigm and expand it to cater for all core AI tasks within a game design process. That includes general player experience and behavior modeling, general non-player character behavior, general AI-assisted tools, general level generation and complete game generation. The new scope for general general game AI beyond game-playing broadens the applicability and capacity of AI algorithms and our understanding of intelligence as tested in a creative domain that interweaves problem solving, art, and engineering.peer-reviewe

    Platformer level design for player believability

    Get PDF
    Player believability is often defined as the ability of a game playing character to convince an observer that it is being controlled by a human. The agent's behavior is often assumed to be the main contributor to the character's believability. In this paper we reframe this core assumption and instead focus on the impact of the game environment and aspects of game design (such as level design) on the believability of the game character. To investigate the relationship between game content and believability we crowdsource rank-based annotations from subjects that view playthrough videos of various AI and human controlled agents in platformer levels of dissimilar characteristics. For this initial study we use a variant of the well-known Super Mario Bros game. We build support vector machine models of reported believability based on gameplay and level features which are extracted from the videos. The highest performing model predicts perceived player believability of a character with an accuracy of 73.31%, on average, and implies a direct relationship between level features and player believability.We would like to thank all participants of the crowdsourcing experiment. This work has been supported in part by the FP7 Marie Curie CIG project AutoGameDesign (630665).peer-reviewe

    Constrained surprise search for content generation

    Get PDF
    In procedural content generation, it is often desirable to create artifacts which not only fulfill certain playability constraints but are also able to surprise the player with unexpected potential uses. This paper applies a divergent evolutionary search method based on surprise to the constrained problem of generating balanced and efficient sets of weapons for the Unreal Tournament III shooter game. The proposed constrained surprise search algorithm ensures that pairs of weapons are sufficiently balanced and effective while also rewarding unexpected uses of these weapons during game simulations with artificial agents. Results in the paper demonstrate that searching for surprise can create functionally diverse weapons which require new gameplay patterns of weapon use in the game.This work has been supported, in part, by the FP7 Marie Curie CIG project AutoGameDesign (project no: 630665) and the Horizon 2020 project CrossCult (project no: 693150).peer-reviewe

    A holistic approach for semantic-based game generation

    Get PDF
    The Web contains vast sources of content that could be reused to reduce the development time and effort to create games. However, most Web content is unstructured and lacks meaning for machines to be able to process and infer new knowledge. The Web of Data is a term used to describe a trend for publishing and interlinking previously disconnected datasets on the Web in order to make them more valuable and useful as a whole. In this paper, we describe an innovative approach that exploits Semantic Web technologies to automatically generate games by reusing Web content. Existing work on automatic game content generation through algorithmic means focuses primarily on a set of parameters within constrained game design spaces such as terrains or game levels, but does not harness the potential of already existing content on the Web for game generation. We instead propose a holistic and more generally-applicable game generation solution that would identify suitable Web information sources and enrich game content with semantic meta-structures.The research work disclosed in this publication is partially funded by the REACH HIGH Scholars Programme — Post- Doctoral Grants. The grant is part-financed by the European Union, Operational Programme II — Cohesion Policy 2014- 2020 Investing in human capital to create more opportunities and promote the wellbeing of society — European Social Fund.peer-reviewe
    corecore